Image of the day

From the
ATWB Customer Gallery

Mars 8-22-2020

My Account

New to Astromart?

Register an account...

Need Help?

News

Kiss the Sky Tonight -- Month of May 2020

Posted by Guy Pirro 05/05/2020 12:48AM

Kiss the Sky Tonight -- Month of May 2020

Welcome to the night sky report for May 2020 -- Your guide to the constellations, deep sky objects, planets, and celestial events that are observable during the month. In May, we are looking away from the crowded, dusty plane of our own galaxy, toward a region where the sky is brimming with distant galaxies. Locate Virgo to find a concentration of roughly 2000 galaxies. Then search for Coma Berenices to identify many more. The night sky is truly a celestial showcase. Get outside and explore its wonders from your own backyard.

Hubble Space Telescope Deployed 30 Years Ago Today

Posted by Guy Pirro 04/25/2020 07:16PM

Hubble Space Telescope Deployed 30 Years Ago Today

Thirty years ago on April 24, 1990, Hubble was carried aloft from the Kennedy Space Center aboard the space shuttle Discovery, along with a five astronaut crew. Deployed into low Earth orbit a day later, the telescope opened a new eye onto the cosmos that has been transformative for our civilization. NASA is celebrating the Hubble Space Telescope's 30 years of unlocking the beauty and mystery of space. Hubble has made more than 1.4 million observations of nearly 47,000 celestial objects. In its 30-year lifetime the telescope has racked up more than 175,000 trips around our planet, totaling about 4.4 billion miles. More than 900,000 observations have been taken with imaging instruments. Hubble observations have produced nearly 164 terabytes of data, which are available for present and future generations of researchers. Astronomers using Hubble data have published more than 17,000 scientific papers, with more than 1,000 of those papers published in the past year. Unlike any space telescope before it, Hubble has made astronomy relevant, engaging, and accessible for people of all ages. The space telescope's iconic imagery has redefined our view of the Universe and our place in space and time.

The Universe May Not Be Isotropic (the Same in All Directions) As Previously Thought

Posted by Guy Pirro 04/20/2020 02:41AM

The Universe May Not Be Isotropic (the Same in All Directions) As Previously Thought

One of the pillars of cosmology is that the universe is “isotropic,” meaning that it is the same in all directions. However, a new study using data from NASA's Chandra X-ray Observatory and ESA's XMM-Newton is now challenging that basic notion. In the past, scientists have conducted many tests to ascertain whether the universe is the same in all directions. These included using optical observations of exploded stars and infrared studies of galaxies. Many of these previous efforts have produced evidence that the universe is seemingly isotropic, but some have not. So, will this new work tear down one of the most crucial pillars of cosmology? Only time (and further research) will tell.

Houston… We Have a Problem – 50 Years Ago Today

Posted by Guy Pirro 04/11/2020 02:41PM

Houston… We Have a Problem – 50 Years Ago Today

The crew of Apollo 13 consisted of Commander James Lovell, Command Module Pilot John Swigert, and Lunar Module Pilot Fred Haise. Their Saturn V rocket launched at 2:13 p.m. EST on April 11, 1970, from Launch Pad 39A at NASA’s Kennedy Space Center in Florida. While en route to the Moon on April 13, an oxygen tank in the Apollo Service Module (SM) exploded. The lunar landing and moonwalks, which would have been executed by Lovell and Haise, were aborted as a dedicated team of flight controllers and engineering experts in the Apollo Mission Control Center devoted their efforts to developing a plan to shelter the crew in the Lunar Excursion Module (LEM) as a “lifeboat” and retain sufficient resources to bring the spacecraft and its crew back home safely. Splashdown successfully occurred in the Pacific Ocean at 1:07 p.m. April 17. As NASA marks the 50th anniversary of the Apollo 13 mission, which has become known as “a successful failure,” the agency is sharing a variety of resources, recognizing the triumph of the mission control team and the astronauts, and looking at how lessons learned can be applied to NASA’s upcoming lunar Artemis program.

Kiss the Sky Tonight -- Month of April 2020

Posted by Guy Pirro 04/09/2020 12:46AM

Kiss the Sky Tonight -- Month of April 2020

Welcome to the night sky report for April 2020 -- Your guide to the constellations, deep sky objects, planets, and celestial events that are observable during the month. Clear April nights are filled with galaxies. You can spot M101 (the Pinwheel Galaxy), M81, and M82. Venus climbs higher in the sky each evening, crossing through the Pleiades star cluster. Mars continues its getaway from Jupiter and Saturn. Also, “the Moon illusion” will be visible during the month as the moody and sometimes downright haunting vista of a huge, yellowish-colored Moon rises above the horizon.

Hubble Discovers the Most Energetic Quasar Outflows Ever Witnessed in the Universe

Posted by Guy Pirro 03/25/2020 02:38PM

Hubble Discovers the Most Energetic Quasar Outflows Ever Witnessed in the Universe

Quasars are extremely remote celestial objects, emitting exceptionally large amounts of energy. Quasars contain supermassive black holes fueled by in-falling matter that can shine 1000 times brighter than their host galaxies of hundreds of billions of stars. Using the unique capabilities of NASA's Hubble Space Telescope, a team of astronomers has discovered the most energetic outflows ever witnessed in the universe. They emanate from quasars and tear across interstellar space like tsunamis, wreaking havoc on the galaxies in which the quasars live.

How Big is a Neutron Star? Smaller Than You Think

Posted by Guy Pirro 03/20/2020 12:15AM

How Big is a Neutron Star? Smaller Than You Think

Neutron stars are compact, extremely dense remnants of supernova explosions. They are about the size of a typical city with up to twice the mass of our Sun. Neutron stars are so dense and compact, that you can think of the entire star as a single atomic nucleus. How the neutron-rich, extremely dense matter behaves is unknown and it is impossible to create such conditions in any laboratory on Earth. Physicists have proposed various models, but it is unknown which, if any, of these models correctly describe neutron star matter in nature. An international research team led by members of the Max Planck Institute for Gravitational Physics in Germany has obtained new measurements of how big neutron stars are. Their results show that a typical neutron star has a radius close to 11 kilometers. They also find that neutron stars merging with black holes are in most cases likely to be swallowed whole, unless the black hole is small and/or rapidly rotating. This means that while such mergers might be observable as gravitational-wave sources, they would be invisible in the electromagnetic spectrum.

Our Milky Way Galaxy is Warped and Vibrating Like a Drum

Posted by Guy Pirro 03/11/2020 07:12PM

Our Milky Way Galaxy is Warped and Vibrating Like a Drum

Astronomers have known since 1957 that the Milky Way’s disc – where most of its hundreds of billions of stars reside – is not flat but somewhat curved upwards on one side and downwards on the other. For years, they debated what is causing this warp. They have proposed various theories including the influence of nearby galaxies or the effects of an imaginary dark matter halo. With its unique survey of more than one billion stars in our galaxy, ESA’s star-mapping satellite Gaia might hold the key to solving this mystery. A team of scientists using data from the second Gaia data release has now confirmed previous hints that this warp is not static but changes its orientation over time. Astronomers call this phenomenon precession and it could be compared to the wobble of a spinning top as its axis rotates.

Kiss the Sky Tonight -- Month of March 2020

Posted by Guy Pirro 03/04/2020 12:08AM

Kiss the Sky Tonight -- Month of March 2020

Welcome to the night sky report for March 2020 -- Your guide to the constellations, deep sky objects, planets, and celestial events that are observable during the month. In March, the stars of spring lie eastward. Look for the constellations Gemini and Cancer to spot interesting celestial features like star cluster M35, the Beehive Cluster, and NGC 3923, an oblong elliptical galaxy with an interesting ripple pattern. If you're up early any morning during March, you'll want to go out and look toward the east to catch a lovely grouping of Mars, Jupiter, and Saturn. The three planets are visible before dawn throughout the month.

Pluto at 90 – Tombaugh’s Discovery Revolutionized Our Knowledge of the Solar System

Posted by Guy Pirro 02/26/2020 09:24PM

Pluto at 90 – Tombaugh’s Discovery Revolutionized Our Knowledge of the Solar System

Ninety years ago this month, Clyde Tombaugh, a young astronomer working at Lowell Observatory in Flagstaff, Arizona, discovered Pluto. In doing so he unknowingly opened the door to the vast "third zone" of the solar system we now know as the Kuiper Belt, containing countless planetesimals and dwarf planets—the third class of planets in our solar system.

Here Come the G-Objects – A Curious New Class of Gas/Star Hybrids at the Center of Our Galaxy

Posted by Guy Pirro 02/24/2020 02:18AM

Here Come the G-Objects – A Curious New Class of Gas/Star Hybrids at the Center of Our Galaxy

Astronomers from UCLA’s Galactic Center Orbits Initiative have discovered a new class of bizarre objects (dubbed G-Objects) at the center of our galaxy, not far from the supermassive black hole called Sagittarius A. These objects look like gas and behave like stars. They are compact most of the time (like stars) and stretch out (like gas) when their orbits bring them closest to the black hole.

The Cherenkov Telescope Array – World’s Largest and Most Sensitive Gamma Ray Detector

Posted by Guy Pirro 02/15/2020 05:55PM

The Cherenkov Telescope Array – World’s Largest and Most Sensitive Gamma Ray Detector

In astrophysics, gamma rays are known to be produced by some of the most energetic objects in the universe: supernova explosions, pulsars, neutron stars, and the swirling environments around black holes. When the highly energetic gamma rays reach Earth, they interact with molecules high in the Earth’s atmosphere and create a fleeting pulse of Cherenkov light in an air shower. The burst of light particles or photons lasts less than the blink of an eye -- on the order of six nanoseconds. Each pulse enables detection of a gamma ray a trillion times more energetic than can be observed with the human eye. A new type of telescope, known formally as the Schwarzchild-Couder Telescope, has been deployed as a high-end test bed for technologies that will be used in the Cherenkov Telescope Array (CTA) -- a configuration of approximately 100 telescopes to be situated in the Canary Islands and Chile, intended to give astrophysicists their best look ever at the transient effects of gamma rays interacting with particles high in the Earth’s atmosphere.

Kiss the Sky Tonight -- Month of February 2020

Posted by Guy Pirro 02/06/2020 01:35AM

Kiss the Sky Tonight -- Month of February 2020

Welcome to the night sky report for February 2020 -- Your guide to the constellations, deep sky objects, planets, and celestial events that are observable during the month. In February, the Winter Triangle is your guide to the night sky. The northern hemisphere is treated to views of the stars Procyon, Sirius, and Betelgeuse. Look for the Orion Nebula, which is sculpted by the stellar winds of central bright stars. The night sky is truly a celestial showcase. Get outside and explore its wonders from your own backyard.

Did a Giant Asteroid Strike End the Deep Freeze Known as the Early “Snowball Earth?”

Posted by Guy Pirro 01/26/2020 08:00PM

Did a Giant Asteroid Strike End the Deep Freeze Known as the Early “Snowball Earth?”

Imagine a world without liquid water, just solid ice in all directions. It would certainly not be a place that most life forms would like to live. And yet our planet has gone through several frozen periods, in which a runaway climate effect led to global, or near global, ice cover. The last of these so-called "Snowball Earth" glaciations ended around 635 million years ago when complex life was just starting to develop. Early models showed that once ice reached tropical latitudes, a positive feedback loop would take hold, in which ice cover would lead to lower temperatures, which would add more ice cover, which would lower temperatures even more. This runaway effect would presumably continue until the entire planet froze over, with even the oceans covered with as much as a kilometer thick layer of ice. This so-called hard “Snowball Earth" would lock the planet into an eternal winter with no apparent way to escape from such a deep freeze. Indeed, scientists have had a hard time explaining how a hard snowball could ever thaw. One proposal is that volcanic activity releases greenhouse gases that eventually warm the planet back up. The amount of carbon dioxide (CO2) needed might be several hundred times higher than what our atmosphere contains now. The other method might be a giant asteroid strike, as is being proposed by Curtin University scientists in Australia.

Holy Cow! Something is not Right with the Expansion Rate of the Universe

Posted by Guy Pirro 01/15/2020 05:19PM

Holy Cow! Something is not Right with the Expansion Rate of the Universe

A team of astronomers using NASA's Hubble Space Telescope has measured the Universe's expansion rate using a technique that is completely independent of any previous method. The results of the team, dubbed the H0LiCOW collaboration (as in “Holy Cow!”), further strengthens a troubling discrepancy between the expansion rate (the Hubble constant) calculated from measurements of the local Universe as compared to the rate predicted from background radiation in the early Universe, a time before galaxies and stars even existed. This latest value represents the most precise measurement yet using the gravitational lensing method, where the gravity of a foreground galaxy acts like a giant magnifying lens, amplifying and distorting light from background objects. This latest study did not rely on the traditional "cosmic distance ladder" technique to measure accurate distances to galaxies that use various types of stars as "milepost markers." Instead, the researchers employed the exotic physics of gravitational lensing to calculate the Universe's expansion rate. The new measurements vary significantly from the currently accepted values and something appears to be off.